Daylighting System Based on Novel Design of Linear Fresnel lens

نویسندگان

  • Thanh Tuan Pham
  • Ngoc Hai Vu
چکیده

In this paper, we present a design and optical simulation of a daylighting system using a novel design of linear Fresnel lens, which is constructed based on the conservation of optical path length and edge ray theorem. The linear Fresnel lens can achieve a high uniformity by using a new idea of design in which each groove of the lens distributes sunlight uniformly over the receiver so that the whole lens also uniformly distributes sunlight over the receiver. In this daylighting system, the novel design of linear Fresnel lens significantly improves the uniformity of collector and distributor. Therefore, it can help to improve the performance of the daylighting system. The structure of the linear Fresnel lenses is designed by using Matlab. Then, the structure of lenses is appreciated by ray tracing in LightToolsTM to find out the optimum lens shape. In addition, the simulation is performed by using LightToolsTM to estimate the efficiency of the daylighting system. The results show that the designed collector can achieve the efficiency of ~80% with the tolerance of ~0.60 and the concentration ratio of 340 times, while the designed distributor can reach a high uniformity of >90%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Large Scale Daylighting System Based on a Stepped Thickness Waveguide

This paper presents a study on the use of optical fiber and a solar concentrator for a building daylighting system. Daylighting is essential for improving indoor environments and reducing electric lighting power consumption in office buildings. Traditionally, optical fiber daylighting systems were implemented only on a small scale. More complicated technologies are required for more amounts of ...

متن کامل

Uniformly Illuminated Efficient Daylighting System

Different approaches have been introduced for the daylighting system to reduce energy consumption, but they were not populated due to complex, high cost, and insufficient designs. There has been a recent problem in achieving uniform distribution of sunlight at a destination deep inside the building. Therefore, we propose a system to achieve high illumination by illuminating the surface of the a...

متن کامل

Electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer

Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrica...

متن کامل

Propose of a novel method to simulate and optimize a polymer optical fiber daylighting system

Optical fiber day lighting systems help the efficiency of using solar energy in the lighting system in domestic, industrial and agricultural sectors. A lot of work has been done on these systems, but the lack of a reliable simulation method to reduce the tolerance, time and cost is evident. In this regard, in this paper, a novel method based on two powerful Optifiber and Zemax software has bee...

متن کامل

Fresnel-based Concentrated Photovoltaic (CPV) System with Uniform Irradiance

Different designs have been presented to achieve high concentration and uniformity for the concentrated photovoltaic (CPV) system. Most of the designs have issues of low efficiency in terms of irradiance uniformity. To this end, we present a design methodology to increase irradiance uniformity over solar cell. The system consists of an eight-fold Fresnel lens as a primary optical element (POE) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017